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The stress intensity factor in a plate containing a rigid circular inclusion is 
determined by reduction to an integral equation with a Cauchy kernel and fin- 
ding its numerical solution. 

1. An elastic medium occupies the whole (z = x + iy )-plane with a circularhole 
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of unit radius and a radial crack of length 21, on the s-axis as is shown in Fig. 1. The 
hole is filled by an absolutely rigid core welded to the matrix along the outline. The 
edges of the crack are free of external forces, the medium is subject to tensile forces P 
at infinity,perpendicular to the line of the crack and there is no rotation at infinitely 

& cI ‘I, ~ 
remote parts of the plane. Let Y be the circum- 

without its tips. Le; us distinguish the upper and 
f _::I:: and L=(u, b) thecrack 

lower edge of the crack and ascribe quantities 
to them to which the plus and minus signs, res- 

The problem’is to determine the stresses and 

displacements in an elastic body, subject to the 

boundary conditions which express the absence 
of elastic displacements along the hole circum- 

Fig. 1 ference and of external forces along the crack 

U=V=O any, U,f = T,& = 0 on L (1.1) 

let us introduce the complex potentials g, (z), I# (z) and let us use the notation 

w (2) = * $- ‘II, (2) (1.2) 

Q (2, Z) = cp (2) + zcp’o + 4 = cp (z) -i- 0 (2) + 

Then according to the known Kolosov-Muskhelishvili representations [l] 

2u (U + iv) = (xs- I)&) - Q (2, Z) (1.3) 

o,+av=2[‘P’(z)+~p”ol, a,--c22iz,,=2 5 Q((z,Z) (1.4) 

where x=3-4v, v is the Poisson’s ratio. We write the boundary conditions of the 
problem as 

xcp (o) - 0 (o) = 0 on y (a = eie) (1.5) 

f 
a!4 - i& = -$- Q* (t, t) = 0 on L (a < t <b) (1.6) 

2, Let us represent the solution as the sum of two components 

cp ‘(2) = cp*(s) + cpcl(z) (2.1) 

0 (2) = o*(z) + %(Z) (9 (2) = $*(s) + 40(z)) 

where ‘pO, $,, yield the solution of the problem of a rigid inclusion without a crackand 

‘P*r ‘Ic1* characterize the additional field. 
The functions ‘po, o. are determined from condition (1.5) and are found easily by 

the Muskhelishvili method. The solution of the second fundamental plane problem (elas- 
tic displacements given on the boundary) for the exterior of a circle is given by formu- 

las (3) and (4) in Sect. 83 of the monograph [l] if we set m = 0. 

xv(o) - @ (o) = f(o) on y (2.2) 

under the condition that there are no stresses and rotation at infinity as well as that the 
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principal vector of the external forces applied to the boundary of the medium equals 
zero. 

According to these formulas, if it is taken into account that for large \z\ 

V”(Z) = A.2 + qo* (z), @o(z) = Bz + coo*(z) (2.3) 
A = P/4, B=PI2 

where (PO*, a~* are regular functions everywhere outside the circular hole, we find by 
discarding the inessential constant in the formulas mentioned 

ypcdz) = AZ + B I xz, coo(z) = Bz + xA /z, Izl>l (2.4) 

Finding ‘p*, $* is much more complicated, it is equivalent to solving the formulated 
problem. From the boundary condition (1.5) we determine the analytic functions cp*.z, 

tf, w*(z, t), dependent on the point t from the interval (a, 6) , which are regular 
everywhere outside the hole except at points of the interval itself, and admit the follow- 
ing representation in the neighborhood of z = t : 

‘ps b, t) = -p (t) In (z - t) + q$(Z, t) (2.5) 

Here p (t) is a still arbitrary real function of t defined on .L. The functions (P*‘, 

o*O should be regular everywhere for [ z 1 > 1, including the infinitely remote point, 
for any t from L. To determine them, we have in conformity with (1.5) 

xcp, (o, t) - CL)*-(o, t) = fo(o, 0 (2.6) 

f. (5, t) = p(t) b In (3 - t> - In ($ - t) - y-f 1 
We have again arrived at the problem (2.2) with a right side f defined by the previ- 

ous equality. Solving it by means of the same formulas [l], we find 

(2.7) 

Now, let us set 
(P* (z, t) dt = - f 5 X1 (2, t) p (2) at (2.8) 

L t 

w* (5) = f s w*(z,t)clt= -+ ~~s(z,t)p(t)~t 
L 

s 
L 

Here K,(z, t) and Ks(z, t) are determined on the basis of (2.5) and (2.7). The po- 
tentials q (z) and o (z) in the total field will be obtained in conformity with (2.1) by 
adding the two composite potentials (2.4) and (2.8). 

To clarify the mechanical meaning of the function p (2) (a < z < b) , let us exa- 
mine the expression 

K (J’, t) = Kr (z, t) + K, (5, t) + (z - +) aK1’j;> 2, 

On the basis of (2.5) and (2.7). we find 

for = ‘-= .r 
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K (z, t) = ]n (X - t) + In (X - t) + K, (z, t) 

Kl@, 0 = +,,(I-&)+(F+J+) $&) - 

(2.9) 

(1--2)(1--z) / zt+1 
xzt (1 - zqz xt 

It follows from the preceding formulas and the representation (2.8) that the combina- 
tion 

Q, (21 Z) = ‘p* (2) + zcp,’ ++* (2) 

is real on the z-axis, i.e. 
Im Q2,(2, 2) = 0, lzl>i 

Differentiating (1.3) with respect to IC, we find 

(2.10) 

2Y ( g+ i+(X+I)cpl(l)- &Q(z, 3 (2.11) 

The potentials (2.4) are real on the z-axis, hence, the vertical displacement v and the 
shear stress ‘G%~ corresponding to these potentials are zero everywhere on the s-axis. 
Hence, there follows from (2.10) and (2.11) that 

2Pg =(~+i)Imcp’(z) for z=z(/zl>l,s#a,b) 

From this and from (2.8) we obtain for points z lying on the crack L 

-+ p (5) = * g on L (2.12) 

by using the Sokhotskii-Plemelj formula. 
Note. The crux of the method applied is the construction of the potentials (2.8) 

corresponding to the unknown normal displacements along the crack in explicit form, 

which will result, as will be shown below, in a singular equation of the first kind in the 
desired dislocation density p (CC). 

Bueckner [Z, 31 indicated the method. As an idea it is contained also in the paper 
[4], published almost simultaneously with [ 21, which refers to the bending of semicircular 
plates. The physical meaning of the function p (r) can be diverse. In [4] it is defined 

in the interval (-1, 1). is complex valued and is represented as a generalized load con- 
centrated at a point of the interval, but in the case under consideration, the integral of 
this function on the segment [a, CC] is treated as a normal displacement also “concent- 
rated” at a point of the crack L , as is evident from the Bueckner formula (2.12) (see 

[3], p. 208, formula (2.6)). 
In [3], devoted to the determination of the stress field in a rotating circular ring with 

a radial crack at the inner boundary, the solution is carried out to the end in the case 

when the outer circumference of the ring is removed to infinity. The solution in closed 
form (see Cl], Sect. 82) is not used therein in the analysis of the auxiliary problem ana- 
logous to (2.5). (2.6), which complicates the procedure of finding formulas of the form 
(2.7) somewhat. 

The problem of an elastic circular inclusion in a medium with an isolated crack (*) 

*) The author of [5] was apparently not acquainted with the Bueckner papers. 
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is considered by the same method in [S]. This note includes the case both of a rigid 
inclusion and a cavity, and the crack was permitted to reach the edge of the inclusion. 

Finally, let us note that if there is no crack, then understandably v+ = V- = const on 

the z -axis, and in conformity with (2.12) the potentials (2.8) vanish. 

3. By construction the potentials (2.4), (2.8) satisfy the condition of no elastic dis- 
placements on Y for any p (5). Moreover, as has already been remarked, they are real 
for real z and, hence do not yield non-zero shear stresses on the #x-axis (in particular 

along the crack) on the basis of (1.4). Therefore, there remains just to satisfy the first 

of the conditions (1.1) on L, which becomes 

d /dx [Q*(x, 2) + Qs (5, x)1 = 0 on L (3.1) 

on the basis of (1.5), where Q is defined by the second expression in (1.2) and the func- 
tions q, w contained therein are given by (2.8) and (2.4). In other words, in order to 
satisfy all the conditions of the problem, it is sufficient to equate the normal stress oy , 
calculated for points of the crack, to zero in the total field. On the basis of the preced- 

ing formulas, (3.1) becomes 

d/dx { - $1 K (x, t) p (t) dt + g (x)} = 0 on L (3.2) 
I 

g (T) = (2A -;- B)x + tx ,I’ A + $ f 

Here K (x, t) is defined by (2.9) and A and B have the values given by (2.3). 

The formula d i 
d% n; In(x-t)p(t)dt= -ip(x) +fSs -- 

s 
L L 

which is valid for any function p (2) continuous on L in the Holder sense. should be 
used to evaluate the singular part of the kernel in (3.2). The regular part of the kernel 
in (3.2) can be obtained by differentiating under the integral sign. Elementary calcula - 
tions based on the considerations mentioned will reduce (3.2) to the following final form: 

1 - p (t) dt 
2n s 

-----_~Ck,(2,t)p(l)dt=f,(~) on L 
t--2 

L i, 

(3.3) 

k,, (5, t) = - +& K,, (x, t) = & {(x2 + 1 + $1 ’ s (1 -- rt) -t (3.4) 

1. t2 

1 
z!_ 

tz 

f. (z) = - + g’(2) = - 4 (I - q -$ - & $1 

The singular equation of the first kind (3.3) is indeed the fundamental relationship of 

the problem. By the linear transformation of variables 

z = l(E + 1) + h + 1, t = I(q + I) + h + 1 (3.5) 

transforming a crack L with tips a - 1 + h, b = I + h + 21 into the segment 

C-1, 11, Eq. (3.3) is converted to a more convenient form for finding its approximate 
solution. The converted equation has the standard form 
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1 ? s -c (11) drl 
2n 

Here 
-1 q--E -1 

T (8 = P (4, f+ (ET rl) = 1 ~o(~, 0, f(E) = f”(X) (3.7) 

The case when the cavity in an elastic body is not filled, is obtained from the substi- 

tution x = -1 considered above in all the formulas (with the exception of those which 

contain the elastic displacements). The fundamental equation of the problem will have 

the previous form (3.3) for the following values of the kernel and the free term : 

x2 - 1 
(2, t,:= 

x2 + 1 - t 
ko 

23 (zt - 1) -7 1 + 
(2x2 + 1) (t” 1) 

2tz 1 22 (xl I)2 + (3.3) - 

(P - 1) (x2 - 1) 1 
x (xt - I)3 + 2& 

f. (x) = - f (1 + & + + $) 

The relationship (2.12) remains unchanged. 
This case has also been considered in [3]. The same problem about a crack emerging 

at the free edge of a circular cavity was studied earlier by using the Mellin transform 

PI. 

4. The normal stresses (5, and or, pass into an infinity of order i/s in the neighbor- 
hood of both tips for h > 0 . More exactly, because of the symmetry of the stress field 

relative to the z-axis, the relationships 

6, = a, = v,& + O(l), %I = 0 (4.1) 

are valid for points of this axis outside the segment [a, b] and near one of the tips c, 

where N is the stress intensity factor at this tip ( *). For points of z near one of the 
tips c and on the crack line 

dv+ x+i 
-=+-&- dx +-+ +w+-cI) 

where the upper sign is taken for c = a and the lower for c = b. Comparing the pre- 

vious equality with (2.12). we find 

WI ~--cIP(~)=~t+o~I---_~) 

Hence, on the basis of (3.5), (3. ‘7) 

iV = +‘2 I/rlip 1/I -t_ E Z (Q -_ 
-1 

(4.2) 

For h > 0 (h is the distance between the left end of the crack and the boundary of 
the medium), independently of the kind of boundary conditions given along the holeedge, 
the number N is evidently nonzero for both tips. Two basic cases should be distinguished 
for h = 0. 

1. Hole filled with a rigid core. In the cape under consideration,when 

- 

*) The number K = flN is often called the stress intensity factor. 
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the crack reaches the edge of a rigid inclusion, the order of the singularity at the appro- 
priate tip (5 = a) depends on the Poisson’s ratio of the material v according to the 
investigation of Williams [7], and equals approximately l/s for Y = 0.3, The stresses 
near the tip remain however infinite, but the stress intensity factor is zero in the sense 

of (4.1). 
2. Hole not filled at all, i.e. the crack reaches the edge of a circular 

cavity free of external forces. In this case, the tip x = a understandably drops out; 
the function p (5) is bounded in the neighborhood of 5 = d and has a singularity of 

order l/a at the other tip ( *), 

6, Let us use the method for the approximate solution of (3.6) indicated in [SJ. In 
conformity with the above, the solution of (3.6) should be sought which is unbounded at 
the tips of the segment. The exception is the second case in Sect. 4. 

In the first case the solution z (ZJ is represented as 

(5.1) 

where the function a, (5) is replaced by the Lagrange interpolation polynomial i& 

constructed at the Chebyshev nodes 

7% 

k=l 

The method reduces Eq. (3.6) to a system of linear equations 

f, = f (Em>, 7mn = To (LJ, Enl = rim 

The functions k (E, q) and f (E) are defined by (3.7) and (3.4). The upper sign in 

the formula for amV is taken for 1 TH, - y 1 = 0, 2, . . ., and the lower for 

lm- Y 1 = 1, 3, . . . . 
After having found the quantities l;kO, the approximate values of the desired rO at 

the nodes (5.3), from (5.4) the stress intensity factor N is determined on the basis of 

(4,2), (5. l), (5.2) by the formulas 

~,z 1/q; i (_ ~)“.lnr;l;g+- 
k=l (5.6) 

&$ i: (- 1)” ZkO ct,g -$ 
k=l 

l ) As has been mentioned above, this case has been considered in detail in p, G],Here, 
as for the case of a rigid inclusion, we indicate a sufficiently simple and effective me- 
thod of calculating the stress intensity factor for it. 
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In the second case, when the solution of (3.6) bounded at the left endpoint is required, 
we proceed from the representation 

r (E> = J/-G G (Q 

and as before replace z0 (EJ by the polynomial (5.2). We again arrive at the system 

(5.4) with the elements 

a 0%” = -&- 
L 
1. + ctg + ctg *“~*~+(1+~“)li(%mr~“)]rjm=f(5m) (5.7) 

The functions k (E, rl) and f (E) are given this time by (3. ‘7) and (3.8). The selec- 
tion rule for the signs in (5.7) remains as before, The stress intensity factor {at the right 

tip of the crack) is determined by the formula 

iVC+,.f~+ $ (-l)kt,-et& (5.8) 
fi=l 

Because of the approximate equalities ro( - 1) = zno, r. (1) = tie which are 

exact enough for large ?z, (5.6). (5.8) can be replaced by the simpler ones 

Here No is the stress intensity factor at the crack tips in a medium without an inclu- 

sion. 
Therefore, if the number of nodes n is sufficiently large, it is then sufficient to know 

the values of the desired function r’o (5) at the outer nodes of the interval to determine 

the stress intensity factor. 
It should still be kept in mind that the solution of the system (5.4) with the matrix 

(5.5) is generally unstable. In order to make it stable. it is necessary to set an addition- 
al condition resulting from the physical meaning of the problem ; in this case the evi- 

dent equality 

1 Pan = 15 z(ti)dE=O 

L -1 

which we shall take in the discrete form 

zrO + aa0 + . . . Jr zno = 0 
(5.91 

is the additional condition. This means that (5.9) should be appended to the system 
(5.4) when solving (3.6) in the class (5.1). 

Values of the ratio & = N / N, as a function of the geometric parameters of the 
problem for v = 0.3 were determined on the M-220 electronic computer, 

As should have been expected, the rigid inclusion diminishes the stress at both tips of 
the crack, where its influence is quite substantial for small h. As the distance h dimi- 

nishes from 1 to 0,Ol , the ratio k decreases from 0.9266 to 0.1158 at the left tip 
when 1 = 1, and from 0.9’711 to 0.8784 at the right tip. The decrease at the right 
tip for a given 1 becomes most significant when the left tip is in the rigid core (h E 0). 

The number k grows as the dimension 1 increases and varies between 0.878 and 0.988 
as the latter is varied from 1 to 9. 

In the case of a crack with left tip emerging on the free surface of a circular cavity 
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(h = O), the reverse dependence is observed. AS 1 diminishes from 5.0 to 0.05 the 
ratio & increases from 2.1386 to 4.2586. 

It should be noted that in this (single) case the condition of uniqueness of the displace- 
ments should be discarded. As is seen from (2.8) and (2.12), the vertical displacement 
L’ takes on an increment of lim [v+ (x) - U- (x)], equal to the width of the gap being 

x-1 

formed at x = 1 after deformation, when the circle 1 z 1 = R, R > 1 -$- 21 is traversed 

in the positive direction. In order to construct a single-valued displacement field, (2.8) 
should be replaced by the representation in [Z, 31 and the solution of the corresponding 

singular equation of the form (3.6) bounded at both tips of the crack, should be deter- 
mined. The method of finding such a solution is indicated in [8] cited shove. 

The system (5.4) was solved for different values of the order n up to n =z 60. It is 

noteworthy that the values of h- do not change substantially starting with n = 20. 
Programing the algorithm and all the calculations needed were performed by N.N. 

Dzhgarkava, to whom the authors are deeply grateful. 
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